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Abstract
Using three different approaches, we analyse the complexity of various
birational maps constructed from simple operations (inversions) on square
matrices of arbitrary size. The first approach comprises the study of the
images of lines, and relies mainly on univariate polynomial algebra, the second
approach is a singularity analysis and the third method is more numerical, using
integer arithmetics. These three methods have their own domain of application,
but they give corroborating results, and lead us to a conjecture on the algebraic
entropy of a class of maps constructed from matrix inversions.

PACS numbers: 02.40.Xx, 05.50.+q, 05.10.−a

1. Presentation

We investigate some properties of birational realizations of Coxeter groups on projective spaces
of various dimensions. There are many motivation to examine these realizations. They appear
naturally in the study of ‘spin models’ of statistical mechanics, in relation with the symmetries
of the Yang–Baxter (alias star-triangle equations) [1, 2] as well as through their connection
with association schemes and knot polynomials [3–8]. Among the basic ingredients in all
these applications are various inversions of matrices (matrix inverse, block inverses, element
by element inverse).

The typical group we consider is a Coxeter group with two involutive generators I and J ,
and no extra relations between I and J . They generate a discrete group �, the infinite dihedral
group, isomorphic to the semi-direct product Z � Z2. The action we analyse is the one of the
infinite parts of �, i.e. to say the iterates of K = I ◦ J .

Studying the iterates of K is the same thing as studying the rational (in fact bi-rational)
discrete dynamical system. Such an investigation is a part of the algebraic dynamics, and we
focus on the analysis of the complexity of the iterates [9–22].
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We perform this analysis for a definite class of transformations, defined from elementary
operations on matrices of size q×q, the entries of the matrices being the natural coordinates of
complex projective spaces CPn. Depending on the specific form of the matrices, the dimension
n will take different values (n � q2 − 1).

Another motivation for our choice is that arbitrary algebraic transformations are not
invertible. Being by construction rational and invertible, matrix inversions constitute a factory
of almost everywhere invertible transformations of any degree, and with any number of
variables. They provide us with a variety of explicit birational dynamics. The specific choice
we made here for the form of the matrices (see also [23, 24]) is motivated by their use in lattice
statistical mechanics, and the richness of the structures of the systems we construct.

We explain, exemplify and confront three different approaches to the problem. We also
present a conjecture for the value of the algebraic entropy for a family of transformations of
interest to statistical mechanics.

The paper is organized as follows. We state in section 2 the problem of calculating the
complexity of a birational transformation acting on a projective space, and define the basic
objects of interest, in particular the algebraic entropy or equivalently the rate of growth of the
degrees of the iterates of a map. We introduce four families of maps, which will be used for
explicit calculations. In section 3 we indicate how to surmise the generating function of the
sequence of degree of iterates of a map from its first terms. This provides a first method of
calculation of the complexity. In section 4, we calculate exactly the sequence of degrees by an
analysis of the singularity structure for one of the families of maps. In section 5, we describe
an arithmetic approach, where we examine the action of iterates on rational points (integer
homogeneous coordinates), and simply measure the growth of the size of the coordinates.
This yields approximate values of the complexity. We conclude with a conjecture.

2. The problem

Let K be a birational transformation of complex projective space CPn. If we write K in
terms of homogeneous coordinates, it appears as a polynomial transformation given by n + 1
homogeneous polynomials of the same degree d. With the rule that we should factorize out
any common factor, d is well defined in a given system of coordinates. Of course it is not
invariant by changes of coordinates. We may construct the sequence {dn} of the degrees of the
iterates Kn of K.

We will use [15], as a measure of the complexity of K, the growth of the sequence dn: in
the absence of factorizations of the polynomials the sequence would just be

dn = dn
1 = dn. (1)

What happens is that if some factorizations appear, they induce a drop of the degree, so
that we only have an upper bound

dn � dn. (2)

The drop may even be so important that the growth of dn becomes polynomial or is
bounded. A measure of the growth is the algebraic entropy [15]4

ε = lim
n→∞

1

n
log dn, (3)

or the rate of growth

λ = exp (ε). (4)

4 The existence of the limit is a consequence of the elementary relation dn+m � dn · dm.
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Both the entropy ε and the rate of growth λ are invariant by any birational change of
coordinates. They are canonically associated with the map K. Our aim is to calculate them for
definite classes of maps, which we now describe.

Suppose M is a q ×q matrix (the ‘q’ is reminiscent of the q-state Potts model of statistical
mechanics), and consider the two simple rational involutions I and J : the involution I is the
matrix inverse up to a factor (i.e. when written polynomially it amounts to replacing each entry
by its cofactor). The involution J is the element by element inverse (also called a Hadamard
inverse, which replaces each entry Mij by its inverse 1/Mij ). The two involutions I and J do
not commute, and their composition K = I ◦ J is generically of infinite order.

The map K acts naturally on CPq2−1. It is however possible to define various reductions
to smaller projective spaces in the following way [25]. For a given size of square matrices,
we define a pattern as a set of equalities between entries of the matrix. The set of all patterns
is the set of all partitions of the entries of the matrix. An example of a pattern is ‘all diagonal
entries equal, all off-diagonal entries equal’. This corresponds to the partition of the entries in
two parts (diagonal + off-diagonal). Clearly any pattern is preserved by the action of J . We
call admissible a pattern which is also stable by I (or equivalently K).

All admissible patterns have been classified for q = 4 and some of them for q = 5 in
[23–26]. It has been also shown that λ can vary considerably from one admissible pattern to
another. For example for 5 × 5 cyclic and symmetric matrices one has λ = 1 (polynomial
growth), whereas with the cyclic matrices one gets λ = (7 + 3

√
5)/2.

We will focus on four fundamental admissible patterns, which exist whatever the size q
of the matrices is. The first one is the pattern (S) of symmetric matrices. The second one (C)

is the pattern of the cyclic matrices defined by Mi,j = Mi+1,j+1 (with indices taken modulo q).
The third one is the pattern of matrices which are at the same time cyclic and symmetric
(CS). The last one is the general pattern (G), without equality conditions between the entries.
From the results obtained on these different patterns, we conjecture that, contrary to intuition
and although their number of variables differ enormously, λ is the same for cyclic (S),
symmetric (S) and general (G) patterns.

3. A first approach: generating functions

From the sequence of degrees {dn}, it is possible to construct a generating function

f (u) =
∞∑

n=0

dnu
n. (5)

Since the degrees are bounded by (2), the series (5) always has a non-zero radius of
convergence ρ. Actually

ρ = 1

λ
, (6)

with λ being the rate of growth defined above.
The calculation method is the following: calculate explicitly the first terms of the series,

and try to guess the values of the generating function. The method is sensible if the generating
function is rational.

The striking fact is that indeed the generating function f (u) happens to be a rational
fraction with integer coefficients in most cases. The consequence is that a finite number of
terms of the series determine it completely. For reversible maps (i.e. when there exists a
similarity relation between the map and its inverse), we have not found any counterexample
to this rule. There are however non-reversible maps for which the generating function is not
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Table 1. Generating functions for the cyclic symmetric (CS) patterns. The formulae for values of
q tagged with a (�) can be proved. nmax is the maximum number of iteration performed, m refers
to the Pad approximation, λ is the rate of growth and λnum is the numerical complexity calculated
in section 5.

q fq(u) nmax m λ λnum

4(�)
(1+u)2

(1−u)2 ∞ 4 1

5(�)
(1+u+2u2)2

(1−u)3(1+u+u2)
14 9 1 1.00

6 (1+2u)2

(1−u)(1−4u)
15 4 4 4.00

7(�)
(1+u+3u2)2

(1−u)(1+u+u2)(1−7u+u2)
12 9 6.854 10 6.85

8 (1+u)(1+2u−u2)

(1−u)(1−11u+7u2−u3)
11 7 10.331 85 10.33

9(�)
(1+u+3u2−3u3)2

(1−u)(1−13u+2u2+u3+12u4−8u5+u6)
11 13 12.832 69 12.83

10 (1+3u)2

(1−u)(1−18u+u2)
9 5 17.944 27 17.94

11(�)
(1+u+5u2)2

(1−u)(1+u+u2)(1−23u+u2)
7 9 22.956 44 22.95

12 (1+4u−3u2)(1+2u−u2)

(1−u)(1−27u+31u2−9u3)
8 8 25.812 54 25.81

13(�)
(1+u+6u2)2

(1−u)(1+u+u2)(1−34u+u2)
9 33.970 56 33.97

rational [22]. Another consequence of the rationality of f is that λ is an algebraic integer, and
we have no counterexample yet to that.

For practical purposes, it is necessary to push the calculation of the degree of the iterates
as far as possible. Instead of evaluating the full iterate, it is sufficient to consider the image of
a generic line l with a running point

l(t) = [a0 + b0t, a1 + b1t, . . . , an + bnt], (7)

where ai, bi are arbitrary coefficients, and to evaluate the images of l(t) by Kn. The degree
dn is read off from this image. The calculation may furthermore be improved by using integer
coefficients in (7) and calculating (formal calculation software are quite efficient at that) over
polynomial with coefficients in Z/Zp with p being a sufficiently large prime integer. Taking
different values of p and of the coefficients ai, bi helps eliminate the accidental simplifications
which may occur.

Suppose we have the degree dn for the first values of n, say n = 1 . . . nmax. We may fit
the series with a Padé approximant F, with numerator (respectively denominator) of degree N
(respectively M), such that

N + M = nmax − 1 (8)

N running from 0 to nmax − 1. Our experience is that, if nmax is large enough, the rational
fraction F we find simplifies drastically, and stabilizes for some central values of N (i.e. the
numerator and denominator are respectively of degree smaller than M and N). This usually
means that the exact generating function has been reached.

Note that the expansion of the non-optimal [N,M] Padé approximants yields non-integer,
or negative coefficients in the expansion of F, in contradiction with these coefficients being a
degree. Table 1 displays the ‘exact’ expression we have inferred for the generating function
for various values of q for the (CS) pattern, as well as the value of m = N + M and the value
of nmax.

When nmax is larger than m, we have a prediction on the next values of the degree, and
this gives confidence that the result is exact.
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In table 1, we also give the inverse of the modulus of the smallest zero of the denominator,
as well as a numerical value computed as explained in section 5.

4. A second approach: singularity analysis

In this section we prove that the rate of growth of the patterns (CS) for prime q is a quadratic
integer, by showing that the sequence of degrees verifies a linear recurrence relation of length 2
with integer coefficients. This implies that the generating function of the degrees is a rational
fraction and corroborates a part of the results given in table 1.

4.1. Some notations

Let M be a cyclic symmetric matrix of size q × q. The matrix M may be written in terms of
the basic cycle of order q:

σ =




0 1 0 · · · 0
0 0 1 · · · 0

· · · · · · · · · · · · · · ·
0 0 0 · · · 1
1 0 0 · · · 0




Meven = x0 + x1(σ + σq−1) + · · · + xp−1σ
q/2, p = q

2
+ 1

Modd = x0 + x1(σ + σq−1) + · · · + xp−1(σ
(q−1)/2 + σ (q+1)/2), p = q + 1

2
when q is even and odd, respectively.

The parameter space is a projective space CPp−1 of dimension p − 1, with p = q/2 + 1
if q is even and p = (q + 1)/2 if q is odd. We use homogeneous coordinates [x0, . . . , xp−1].

We will study the two elementary transformations I and J acting on M. Both are rational
involutions (and are thus birational transformations).

The Hadamard inverse J may be written polynomially in terms of the homogeneous
coordinates

J : [x0, . . . , xp−1] −→

∏

k �=0

xk,
∏
k �=1

xk, . . . ,
∏

k �=p−1

xk


 . (9)

The matrix inverse I, up to a factor, transforms cyclic matrices into cyclic matrices, and
symmetric matrices into symmetric matrices. It thus acts on cyclic symmetric matrices.

For cyclic symmetric matrices, the matrix inverse I is related to the Hadamard inverse J ,
by a similarity transformation:

I = C−1 ◦ J ◦ C. (10)

The transformation C acts linearly on the p homogeneous coordinates. Denoting ω the qth
root of unity, C is given by the p × p matrix with entries:

Cr,0 = 1, Cr,s = ωrs +
1

ωrs
r = 0, . . . , p − 1, s = 1, . . . , p − 1 (11)

for q odd and

Cr,0 = 1, Cr,s = ωrs +
1

ωrs
r = 0, . . . , p − 1, s = 1, . . . , p − 2

Cr,p−1 = (−1)r
(12)

for q even.
The matrix C verifies C2 = 1.
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Figure 1. Successive images.

4.2. Sequences of surfaces and degrees

Consider now a sequence of hypersurfaces in CPp−1, obtained by applying successively I, J ,
then I and so on, starting with a generic hyperplane S0 (see figure 1). Each surface Sn has a
polynomial equation, of degree dn, which we also denote as Sn. Since for non-singular points,

x ∈ S2n ↔ J (x) ∈ S2n−1, (13)

S2n can be obtained from S2n−1 by substituting the coordinates of x with the homogeneous
polynomial expressions of the coordinates of J (x) in S2n−1(x). Note that, since J is an
involution, S2n−1 may be obtained from S2n in the same manner.

What happens at the level of the equations is that S2n−1(J (x)) may factorize. One
of the factors is S2n(x). The only other possible factors are powers of the coordinates of
x = (x0, . . . , xp−1) as explained in the lemma below. The relation

S2n−1(J (x)) = S2n(x) ·
p−1∏
k=0

x
α

(k)
2n−1

k (14)

defines the exponents α
(k)
2n−1.

4.3. A lemma

The previous relation is crucial. Its proof is elementary and goes as follows.
Suppose B is a birational involution. When written in terms of the homogeneous

coordinates, B2 appears as the multiplication by some common polynomial factor of all
the coordinates, that is to say the identity transformation in projective space.

B(B(x)) = [κB(x) · x0, κB(x) · x2, . . . , κB(x) · xp−1] (15)

with κB(x) = some polynomial.
We then have, if two algebraic hypersurfaces S and S ′ are the proper images of each other

by involution B:

S(B(x)) = S ′(x) · R(x) (16)

S ′(B(x)) = S(x) · T (x) (17)
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with R and T being some polynomial expressions of the coordinates. We then have, using (16)
and (17):

κB(x)deg(S) · S(x) = S(x) · R(B(x)) · T (x), (18)

i.e. to say

κB(x)deg(S) = R(B(x)) · T (x). (19)

Equation (19) shows that the only factors in the right-hand side of equation (17) are the
equations of S, and polynomial expressions T (x) which divide κB(x), possibly raised to some
power.

In the specific example B = J , and S = S2n−1, using

κJ (x) =
p−1∏
i=0

x
p−2
i (20)

we obtain

S2n−1(J (x)) = S2n(x) ·
p−1∏
i=0

x
ρi

i , (21)

with xi(x) being the ith coordinate of t and ρi some integer power.
This ends the proof of formula (14).

4.4. Recurrence relation

Similar to equation (14), we have

S2n(J (x)) = S2n−1(x) ·
p−1∏
i=0

x
α

(i)
2n

i , (22)

with the constraint

κJ (x)d2n =
p−1∏
i=0

x
α

(i)
2n−1

i (x) ·
p−1∏
j=0

x
α

(j)

2n

j (J (x)). (23)

We also have the corresponding equations for the action of I.

S2n(I (x)) = S2n+1(x) ·
p−1∏
k=0

X
β

(k)
2n

k (24)

S2n+1(I (x)) = S2n(x) ·
p−1∏
i=0

X
β

(i)
2n+1

i , (25)

where Xi is the ith coordinate of Cx.
To make relations more uniform, we introduce a slight change of notation: define the

sequences
{
ui

n

}
and

{
vi

n

}
with the convention that

αi
2k+1 = ui

2k+1, αi
2k = vi

2k, (26)

βi
2k+1 = vi

2k+1, βi
2k = ui

2k. (27)

At step n we have 2p + 1 variables (dn, u
i
n and vi

n).
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A first equation simply expresses the factorization:

dn = (p − 1)dn−1 −
p−1∑
i=0

ui
n−1. (28)

Another set of equations is obtained by expressing that both I and J are involutions:

(p − 2)dn = vi
n−1 +

∑
j �=i

ui
n, i = 0 . . . p − 1. (29)

It is easy to obtain from equations (28) and 29:

vi
n = (p − 2)dn−1 + ui

n−1 −
p−1∑
j=0

u
j

n−1, i = 0 . . . p − 1. (30)

4.5. Singularity structure

We need p additional equations to complete the previous system. They will be given, under
some constraints, by the analysis of the singularity structure. The basic idea is that the numbers
αi

n, β
i
n (or equivalently ui

n, v
i
n) have a geometrical meaning: they are the multiplicity of some

specific points on the surface Sn.
The singularity structure of J is very simple. A singular point is a point whose image

is undetermined: this happens when all polynomial expressions giving the image (9) vanish
simultaneously. Any point with more than two vanishing coordinates is singular for J .

We will look at the action of the pair I, J on the hypersurfaces composing the factor κJ

of equation (23). Those are just the n hyperplanes �k, k = 0 . . . p − 1 of equation

�k : {xk = 0}. (31)

All intersections of these hyperplanes are made out of singular points of J . Some points are
in a sense maximally singular. They are the intersections of all but one of the planes �r , i.e.
all but one of their coordinates vanish. There are p such points

Pk = [0, . . . , 0, 1, 0, . . . , 0], k = 0 . . . p − 1 (32)

with 1 in (k + 1) th position.
The singularity structure of I is the same as that of J , up to the linear change of coordinates

C. There are in particular p distinguished singular points Qk, k = 1 . . . p of I:

Qk = C−1Pk, k = 0 . . . p − 1. (33)

To complete the set of equations (28), (29), (30), we need to explore in some more details
the singularity structure of the maps. What matters is the interplay between I and J .

The map J sends the hyperplane �k (31) onto the point Pk (32). The subsequent images
depend on what q is.

The situation is tractable when q is a prime number, in which case the subsequent images
of �k always go back to the point Pk after a finite number of steps, actually one or three steps.
There, we meet a singularity, and the equation of �k factorizes. We will examine the case
where q is a prime number, q = 2p − 1.

The coordinate x0 plays a special role and the point P0 behaves differently from the other
points Ps, s = 1 . . . p − 1.

Whatever q, the transformation of the hyperplane �0 reads

�0
J
� P0

I−→ P0
J� �0. (34)



On the complexity of some birational transformations 3649

We use the following convention concerning the arrows: when a variety is sent by the map
onto a variety of same codimension we use the plain arrow −→. When the codimension of
the image is lower (blow-down) we use the symbol �, and when it is larger (blow-up) we use
the squiggly arrow �. A blow-up for the birational mapping K corresponds to a blow-down
for its inverse K−1.

The action of I and J on the hyperplane �s reads

�s

J
�Ps

I−→ Rs
J−→ Rs

I−→ Ps
J� �s. (35)

The points Rs have coordinates [±1,±1, . . . ,±1]. For example for q = 5, R2 = [+1, +1,−1]
and R3 = [+1,−1, +1], while, for q = 7, R2 = [+1,−1,−1, +1], R3 = [−1,−1, +1, +1]
and R4 = [−1, +1,−1, +1].

The pattern is similar for the points Qk . It is obtained from the previous one by the linear
change of coordinates defined by C. The planes �k are replaced by the planes �′

k = C−1�k

and the points Rs are replaced by the points R′
s = C−1Rs .

When q is not a prime number, the pattern is different: the successive actions of I and J

lead to singular points other than the Pk’s and Qk’s. In appendix A the case q = 9 is studied
as an example.

Relations (34), (35) allow us to relate the multiplicities of the singular points Pk on
different surfaces Sn. Since P0 → P0 in (equation 34) we have

u0
n = v0

n−1 (36)

and since Ps → Ps in (equation 35) we obtain

us
n = vs

n−3, s = 1 . . . p − 1. (37)

4.6. End of the proof

The previous analysis shows that when q is prime, the factors xi (respectively Xi) 1 � i < p

appear with the same exponent. In other words, for q a prime number, the points
P1, P2, . . . Pp−1 play an equivalent role; they will have the same multiplicities on each Sn; and
we will use u1

n to denote their common value.
Using (36), (37) together with (28) and (30) we get

dn = (p − 1)dn−1 − u0
n−1 − (p − 1)u1

n−1,

u0
n = (p − 2)dn−2 − (p − 1)u1

n−2,

u1
n = (p − 2)dn−4 − u0

n−4 − (p − 2)u1
n−4.

(38)

The rate of growth of the dn’s is the inverse of the modulus of the smallest eigenvalues of the
12 × 12 matrix given by the above linear system. The outcome is that the rate of growth of K
is the inverse of the smaller root of

x2 + (2 − (p − 1)2)x + 1 = 0. (39)

To obtain the full expression of the generating functions, we need to specify the initial
values of dn, u

0
n and u1

n. They can easily be calculated with the help of formal calculation
software. The results are summarized in table 2.

Note that when q is not prime, we may still write a set of recursions similar to (38). The
system is not complete, and cannot be obtained from the analysis presented in section 4 (see
appendix A).
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Table 2. Initial values of dn, u
0
n and u1

n for 0 � n < 4.

n dn u0
n u1

n

0 1 0 0
1 p − 1 0 0
2 (p − 1)2 p − 2 0
3 p3 − 3p2 + 2p + 1 (p − 1)(p − 2) 0
4 (p − 1)(p3 − 3p2 + p + 3) (p − 1)2(p − 2) p − 2

5. Arithmetical approach: complexity through number of digits

The third approach consists in calculating the image of integer points, and evaluating the
growth of the size of the coordinates, through the number of digits. It means that we do not
try to calculate the iterates formally. This method was already experimented in [13].

Obviously the integer coordinates become extremely large, as large as 106000 and we used
the GMP library to implement the program [27]. At each step of the calculation we factor out
the greatest common divisor of the components. We assume that the existence of a common
factor between all the coordinates is due to a factorization of the underlying polynomial.
This assumption is valid, at least after the first step where an accidental factorization could
occur. The degree of the polynomial is estimated as the number of bits used to store a typical
entry (i.e., log2(Mij )). The algorithm proceeds as follows: (i) construct a random matrix of
integers respecting the equalities of the pattern under consideration, (ii) replace each term by
its cofactor, (iii) divide every term by the greatest common factor of all of them, (iv) replace
each term by the product of all others, (v) divide every term by the greatest common factor
of all of them, (vi) record the number of digits used to store the matrix elements. Note that
one can exchange (ii) and (iv) without altering the results. The procedure is iterated for as
many steps as possible, and possibly several runs with different initial matrices are performed.
Note that for pattern involving only very few variables, it can be efficient to write directly the
recursion relation over the variables.

The results are summarized in table 3, giving the value of the complexity for various
values of q and for the four patterns introduced above. For cyclic matrices and general q it
has been shown in [15] that the rate of growth for K = I ◦ J is a quadratic integer which is
the inverse of the smaller root of

x2 + (2 − (q − 2)2)x + 1. (40)

In table 3 an empty cell means that we have not been able to compute the corresponding λ.
This is due to the fast growth of the coordinates, preventing us to perform a sufficient number
of numerical iterations. The number of digits displayed is just an indication of the estimated
accuracy of our numerical result.

6. Conclusion

The three different approaches we have used give corroborating results. The first two methods
are indeed measuring the same object, i.e. the rate of growth of the degree of iterates. The
third method is evaluating something which may a priori be different, but appears to coincide
with the previous one. We see by comparing the last two columns of table 3 that λG happens
to be extremely close to λS , as well as to λC . This allows us to state the two conjectures:
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Table 3. Complexities of K = I ◦ J for various values of q, for patterns (CS), (C), (S) and
(G). The numerical and analytical results are displayed. The number in brackets is the number of
iterations of K we have been able to calculate.

Cyclic symmetric Cyclic Symmetric General
q λCS λC λS λG

5 Numerical 1.000 6.85 [7] 6.86 [7] 6.86 [6]
Analytical 1 6.854

6 Numerical 4.00 [10] 13.93 [5] 13.88 [5] 13.9 [4]
Analytical 4 13.928

7 Numerical 6.854 [7] 22.96 [4] 22.97 [4] 22.97 [4]
Analytical 6.854 22.956

8 Numerical 10.33 [6] 33.97 [4] 33.97 [3] 34.1 [3]
Analytical 33.970

9 Numerical 12.83 [5] 47.0 [3] 47.0 [3] 47.0 [3]
Analytical 46.978

10 Numerical 17.9 [4] 62.0 [3] 62.0[3] 62.0 [2]
Analytical 61.984

11 Numerical 22.96 [4] 79.0 [3] 79.1 [2] 80.7 [2]
Analytical 22.956 78.987

12 Numerical 25.8 [4] 98.0 [3] 99.1 [2] 100.3 [2]
Analytical 97.990

13 Numerical 33.97 [3] 130.3 [3] 121.6 [2] 121.5 [1]
Analytical 33.970 118.992

14 Numerical 39.1 [2] 142.8 [2]) 144.5 [2] 144.2 [1]
Analytical 141.993

15 Numerical 42.19 [2] 167. [2] 170. [2]
Analytical 166.99

16 Numerical 49.10 [2] 194. [2]
Analytical 193.995

17 Numerical 61.6 [2] 224. [2]
Analytical 61.984 222.995

Proposition 1. Evaluating the rate of growth of the ‘size’ of iterates on rational points yields
the same value as the rate of growth of the degree of the iterates.

Proposition 2. The rate of growth of the degree of the iterates of the transformation K = I ◦J

for the general matrices (pattern (G)), for symmetric matrices (pattern (S)), and for cyclic
matrices (pattern (C)) are the same. Their common value is the inverse of the modulus of the
smaller root of x2 − (q2 − 4q + 2)x + 1 = 0.

Such a statement means that although the number of parameters of patterns (G) and (S) is
much bigger than the one of pattern (C), the latter captures the entirety of the complexity of
the product of inversions K = I ◦ J . This might be related to the structure of bialgebra of the
set of square matrices equipped with ordinary matrix product and Hadamard product. Phrased
differently, the skeleton formed by the cyclic matrices encodes the structure of the whole
bialgebra. This deserves further investigations which are beyond the scope of this paper.

Appendix. The cyclic symmetric case for q = 9

We consider in this appendix the case q = 9. Since q is not a prime number, our result of
section 4 does not apply.
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Table A1. The initial values of dn, u
0
n, u

1
n and u2

n for 0 � n � 4.

n dn u0
n u1

n u2
n

0 1 0 0 0
1 4 0 0 0
2 16 3 0 2
3 59 12 0 8
4 216 46 3 32

The number of homogeneous variables is p = (q + 1)/2 = 5. We use the same notation
as in the text for the hyperplane �k and the point Pi . In addition we define the three
points Q1 = (1, 1,−1,−1, 1),Q2 = (1, 1, 1,−1,−1) and Q4 = (1,−1, 1,−1, 1). We also
introduce the codimension-two variety �0,3 defined by the two equations x0 = 0 and x3 = 0.
The singularity structure is

�0
J
� P0

I−→ P0
J� �0

�1
J
� P1

I−→ Q1
J−→ Q1

I−→ P1
J� �1

�2
J
� P2

I−→ Q2
J−→ Q2

I−→ P2
J� �2

�3
J
� P3

I−→ Q3
J��0,3

�4
J
� P4

I−→ Q4
J−→ Q4

I−→ P4
J� �4

the subsequent iterates of �0,3 are non-singular. We see that there will be six sets of exponents:
u0

n and v0
n related to x0; u1

n and v1
n related to x1, x2 and x4; and finally u2

n and v2
n related to x3.

The equations expressing the degree drop due to the factorization, and the fact that I and J are
involutions, are

dn+1 = 4dn − u0
n − 3u1

n − u2
n,

v0
n+1 = 3dn − 3u1

n − u2
n,

v1
n+1 = 3dn − u0

n − 2u1
n − u2

n,

v2
n+1 = 3dn − u0

n − 3u1
n.

Moreover, the singularity structure shown above yields

u0
n+1 = v0

n u1
n+1 = v1

n−2.

It is clear that an equation is missing to close the system:

dn+1 = 4dn − u0
n − 3u1

n − u2
n

u0
n+1 = 3dn−1 − 3u1

n−1 − u2
n−1

u1
n+1 = 3dn−3 − u0

n−3 − 2u1
n−3 − u2

n−3.

If we suppose that there exists a recursion relation of the form

u2
n+1 = adn−q + bu0

n−q + cu1
n−q + du2

n−q + e,

where the a, b, c, d, e, as well as the shift q are integer constants. The hypothesis q = 1 yields

u2
n+1 = 2dn−1 − 3u1

n−1. (A.1)

Introducing, with obvious notations, the generating functions

d(s) =
∑

dns
n, ui(s) =

∑
ui

ns
n, i = 1, 2, 3,
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one easily finds (see table A1)

d(s) = 1 +
(4 − s2 − s6)s

P (s)
, u0(s) = (2s2 − 3)(1 + s2)s4

P(s)
,

u1(s) = (2s2 − 3)s4

P(s)
, u2(s) = (3s4 − 2s2 − 2)s2

P(s)
,

with

P(s) = (1 − s) · (1 − 3s − 2s2 − s3 + 2s4 + 2s5 − s6)

from which

f9(u) = (1 + u + 3u2 − 3u3)2

(1 − u)(1 − 13u + 2u2 + u3 + 12u4 − 8u5 + u6)
.
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